

The Wennberg International Collaboration, London, September 2014

Is there a systematic relationship between inpatient care and ambulatory care and do we need to take account of it when studying regional variation?

Dr. Dominik von Stillfried, Thomas Czihal

What is the issue?

- most policy issues focus on one type / group of services and/or providers (e.g. quality of services / provider payment / capacity planning)
- they are often triggered or supported by **focused reports** on e.g. variation in specific procedures provided by hospitals, variation in specific services provided by physicians, etc ...
- In many health systems this approach is based on **routine data** which is produced according sector-specific regulatory requirements (due to e.g. specific payment schemes, different responsibilities of local and central government, different legislative context etc.)
- e.g. Germany: the healthcare system is split into two distinct "sectors",
 - 1. ambulatory care provided by office-based physicians
 - 2. inpatient care (and outpatient care) provided by hospitals

This leads to a central question:

If there is some degree of intersectoral interdepence: how much of the variation in one "sector" is compensated by variation in another "sector" of the healthcare system?

In short: How much of variation is substitution?

Database

- all data refer to statutory health insurance (coverage 90% / 72 million) only (no data on private health insurance)
- claims data refer to ambulatory care by office-based physicians available 2007 – 2011 at patient/physician level (~500 million cases p.a.; case = same patient/payor/practice/quarter of the year)
- inpatient admissions / days are reported by destatis eg. rates per DRG according to county of residence of the patients (~18 million cases p.a.),
- Information on age, morbidity (claims data), mortality and social structure and provider structure publically available per county; some cities provide reference per quarter
- 16 states, 17 jurisdictions of regional physician associations, 412 counties

City of Hamburg as a model

Differences in risk structure according to quarters

(based on age, gender, diagnoses of office-based physicians for resident statutorily insured population)

Data: claims database (Zi), DRG data by city of Hamburg

74 Min E

2.53 Mio. 8

Nordrhein-Westfe

2,5 8 Mio. Elm

. Dentin

City of Hamburg as a model

Utilization of ambulatory care: higher in quarters with higher risk structure (age/gender/morbidity - all ages)

Expected utilization (claims volume in Euro)

Social deprivation: associated with different patterns of utilization

140 € value of total claims

City of Hamburg as a model

More intensive utilization of ambulatory care associated with reduced number of inpatient cases (eg ages 18 to 64)

N.B.: utilization of inpatient and ambulatory care is higher for more deprived quarters, but share of inpatient care tends to be highest for most deprived quarters

What did we see?

- Utilization of both inpatient and ambulatory care respond to indicators of need
- given the risk structure of a population, there is a degree of potential substitution between inpatient and ambulatory care,
- however, socio-economic factors (deprivation) might interfere.

Questions arising when looking at variation in ambulatory health care:

- Check: Do we find more "need" in highly serviced regions?
- Do we account for the fact that more intensive ambulatory care can reduce utilization of inpatient care (after adjusting for social structure)?
- If we find lower than expected utilization of inpatient care: Does this indicate a higher level of quality of ambulatory care? (N.B. low hospitalization rates feature as quality indicators for continous chronic care)
- If medical progress constantly allows for higher share of ambulatory care, could we create benchmarks for a health policy target?

Utilization of ambulatory and inpatient care and risk structure at county level

Risk structure, mortality and physician density

CC, Pearson: 0,49 (p < 0,01)

CC, Pearson: 0,02 (p = 0,67)

413 Landkreise und kreisfreie Städte; Eigene Berechnungen; Risikoadjustierung nach H15EBA 1-jährig prospektiv; Datenbasis: StBA, vollständige vertragsärztliche Abrechnungsdaten 2007/2008

Observation

SEITE 10

regional variation in inpatient cases (based on DRGs) per insuree exceeds variation of cases*/insuree in ambulatory care

Observations on variations of ambulatory care

deviation from national average, no of services per resident insuree (age/sex adjusted)

Chapter 33: Ultrasound diagnostics

Chapter 34: CT. MRT, diagnostic & mereoritational radiology compute and the open the file again. If the red x still appears, you we the defet the image and then insert it again. W VC = 9,9%

SEITE 11

Observations on variations of ambulatory care

deviation from national average, no of services per resident insuree (age/sex adjusted)

Variation in physician density (all specialties) in ambulatory care per 100.000 inhabitants and county 2011

SEITE 13

Physician density and volume of services per physician – the importance of adjusting for outflow

After correcting for outflow of services to other regions a high physician density is clearly negatively associated with service volume per physician

413 counties; database: destatis, claims database 2008

Intensity of ambulatory care per patient and physician density (after correcting for outflow)

413 Landkreise und kreisfreie Städte; Eigene Berechnungen; Datenbasis: StBA, vollständige vertragsärztliche Abrechnungsdaten 2008

Zi-index of social structure / set of indicators

selection of indicators was based on literature and availability at county-level method: factor analysis

Factor 1:

Socio-economic Health Index (SGX)

rate of unemployment /welfare recipients no. of persons in supported housholds share of working welfare recipients recipients of rent-subsidies

High values of SGX

life expectancy (men) income per household

Factor 2: Index of Urbanization (UX)

mobility (Out- and Inmigration) rate of single-housholds share of foreigners rate of jobless foreigners Rate of highly qualified employees Population density welfare payments to pensioners

High values of UX

Size of households

Zi-index of social structure / geographic distibution

SEITE 17

Zi-index of social structure / medical need

Correlation of SGX und UX with indicators of medical need		
Indicator	CC r (p	o-value)
	SGX	UX
morbidity/mortality		
RRS	0,790 (<0,001)	ns
total mortality (standardised)	0,675 (<0,001)	-0,190 (0,024)
premature mortality (standardised)	0,738 (<0,001)	0,138 (0,005)
inpatient care		
admissions per 100.000	0,650 (<0,001)	-0,226 (<0,001)
ambulatory care		
value of all claims	0,346 (<0,001)	0,473 (<0,001)
GP claims	0,459 (<0,001)	ns
Specialists claims	ns	0,583 (<0,001)
Value of specific fee-items		
drug substitution (01950)	ns	0,613 (<0,001)
multiple chronic diseases (03212)	0,666 (<0,001)	-0,109 (0,027)
psychotherapy (chapter 35)	-0,403 (<0,001)	0,645 (<0,001)

Relationship between inpatient and ambulatory care for ambulatory sensitive conditions

Eur J Health Econ DOI 10.1007/s10198-014-0578-4

ORIGINAL PAPER

The impact of office-based care on hospitalizations for ambulatory care sensitive conditions

Fig. 1 Geographical distribution of ambulatory care-sensitive hospitalizations and the corresponding UVS points billed (for services performed in the ambulatory sector) for women (a,b) and men (c,d). Both indicators are age-standardized

Z

Relationship between inpatient and ambulatory care for ambulatory sensitive conditions

Eur J Health Econ DOI 10.1007/s10198-014-0578-4

ORIGINAL PAPER

The impact of office-based care on hospitalizations for ambulatory care sensitive conditions

Leonie Sundmacher · Thomas Kopetsch

Fig. 2 Relationship between UVS points and ACSCs hospitalization rate for women (evaluated at the mean value of the covariates)

Germany: Demographic aging and longterm development of inpatient cases

TABELLE 2

Indexzerlegung stationäre Versorgung ausgewählter chronischer Krankheiten 2000-2009, beide Geschlechter

Hauptdiagnosegruppe/Diagnosegruppe	Fallz	ahlen		Index (Veränderung	in %)
	2000	2009	insgesamt	wegen Risiko	wegen demogra- fischer Alterung
beide Geschlechter					
A00-T98 alle Krankheiten und Folgen äußerer Ursachen	16 723 761	17 567 310	1,050 (+5,0)	0,990 (-1,0)	1,061 (+6,1)
darunter					
100–199 Herz-Kreislauf-Erkrankungen	2 752 941	2 695 860	0,979 (-2,1)	0,852 (-14,8)	1,150 (+15,0)
– I20–I25 ischämische Herzkrankheiten	895 016	661 317	0,739 (-26,1)	0,641 (-35,9)	1,152 (+15,2)
– I50 Herzinsuffizienz	239 148	363 256	1,519 (+51,9)	1,245 (+24,5)	1,220 (+22,0)
– I60–I69 zerebrovaskuläre Krankheiten	390 598	357 141	0,914 (-8,6)	0,773 (-22,7)	1,183 (+18,3)
C00–C97 (ohne C44) bösartige Neubildungen	1 617 804	1 425 633	0,881 (-11,9)	0,772 (-22,8)	1,142 (+14,2)
- C18-C21 Darmkrebs	248 352	173 455	0,698 (-30,2)	0,613 (-38,7)	1,139 (+13,9)
- C33-C34 Lungenkrebs	177 450	188 100	1,060 (+6,0)	0,922 (-7,8)	1,150 (+15,0)
– C50 Mammakarzinom	250 510	146 587	0,585 (-41,5)	0,553 (-44,7)	1,057 (+5,7)
– C61 Prostatakarzinom	80 088	83 868	1,047 (+4,7)	0,845 (-15,5)	1,239 (+23,9)
M00-M99 Krankheiten des Muskel-Skelett-Systems und des Bindegewebes	1 239 222	1 641 564	1,325 (+32,5)	1,244 (+24,4)	1,065 (+6,5)
– M15–M19 Arthrosen	298 507	419 411	1,405 (+40,5)	1,256 (+25,6)	1,118 (+11,8)
– M40-M54 Krankheiten der Wirbelsäule und des Rückens	340 625	545 418	1,601 (+60,1)	1,508 (+50,8)	1,061 (+6,1)

Source: Nowossadeck Demografische Alterung und stationäre Versorgung Dt. Ärzteblatt 2012

Quelle: Krankenhausdiagnosestatistik des Statistischen Bundesamtes, eigene Berechnungen

Germany: Demographic aging and longterm development of inpatient cases

TABELLE 2						Source: Nowossadeck
Indexzerlegung stationäre Versorgung ausgewählter chronischer Kra	nkheiten 2000	-2009, beide	Geschlechter			Demografische Alterung
Hauptdiagnosegruppe/Diagnosegruppe	Fallz	ahlen		Ind (Veränder	lex ung in %)	und stationäre Versorgung
	2000	2009	insgesamt	wegen Risiko	wegen demogra- fischer Alterung	Dt. Ärzteblatt 2012
beide Geschlechter					Index	2000-2009
A00–T98 alle Krankheiten und Folgen äußerer Ursachen	16 723 761	17			(Veränderung) in %)
darunter		_	incase	amt	wogon	wagan damagra
100–199 Herz-Kreislauf-Erkrankungen	2 752 941	2	insges	anni	Risiko	fischer Alterung
– 120–125 ischämische Herzkrankheiten	895 016		obsory	od		avpacted*
– 150 Herzinsuffizienz	239 148		JUSEIV	eu		expected
– I60–I69 zerebrovaskuläre Krankheiten	390 598	0	1,050		0,990	1,061
C00–C97 (ohne C44) bösartige Neubildungen	1 617 804		(+5,0)		(-1,0)	(+0,1)
- C18-C21 Darmkrebs	248 352	173 455	0,698	0,613	143	
- C33-C34 Lungenkrebs	177 450	188 100	1,060 (+6,0)	0,922 (-7,8)	after ad	ljusting for
– C50 Mammakarzinom	250 510	146 587	0,585 (-41,5)	0,553 (-44,7)	of inpatien	admissions
– C61 Prostatakarzinom	80 088	83 868	1,047 (+4,7)	0,845 (-15,5)	1% lowe	er (~ 20% of
M00–M99 Krankheiten des Muskel-Skelett-Systems und des Bindegewebes	1 239 222	1 641 564	1,325 (+32,5)	1,244 (+24,4)	obs	served)
– M15–M19 Arthrosen	298 507	419 411	1,405 (+40,5)	1,256 (+25,6)	1,118 (+11,8)	
 M40-M54 Krankheiten der Wirbelsäule und des Rückens 	340 625	545 418	1,601 (+60,1)	1,508 (+50,8)	1,061 (+6,1)	Zi

Quelle: Krankenhausdiagnosestatistik des Statistischen Bundesamtes, eigene Berechnungen

Germany: Demographic aging and longterm development of inpatient cases

TABELLE 2							Source: Nowossadeck
Indexzerlegung stationäre Versorgung ausgewählter chronischer Kra	nkheiten 2000	–2009, beide (Geschlechter				Demografische Alterung
Hauptdiagnosegruppe/Diagnosegruppe	Fallz	zahlen		Index Veränderung) in %)		und stationäre Versorgung
	2000	2009	insgesamt	wegen Risiko	wegen demog fischer Alteru	ra- ng	Dt. Ärzteblatt 2012
beide Geschlechter							
A00-T98 alle Krankheiten und Folgen äußerer Ursachen	16 723 761	17 567 310	1,050 (+5,0)	0,990 (-1,0)	1,061 (+6,1)		
darunter							Circulatory
100–199 Herz-Kreislauf-Erkrankungen	2 752 941	2 695 860	0,979 (-2,1)	0,852 (-14,8)	1,150 (+15,0)	S۱	/stem: - 14.8%
– I20–I25 ischämische Herzkrankheiten	895 016	661 317	0,739 (-26,1)	0,641 (-35,9)	1,152 (+15,2)	J	
– I50 Herzinsuffizienz	239 148	363 256	1,519 (+51,9)	1,245 (+24,5)	1,220 (+22,0)		
– I60–I69 zerebrovaskuläre Krankheiten	390 598	357 141	0,914 (-8,6)	0,773 (-22,7)	1,183 (+18-3		
C00-C97 (ohne C44) bösartige Neubildungen	1 617 804	1 425 633	0,881 (-11,9)	0,772 (-22,8)	(+14,2)		Neoplasms:
- C18-C21 Darmkrebs	248 352	173 455	0,698 (-30,2)	0,613 (-38,7)	1,139 (+13,9)		- 22,0%
– C33–C34 Lungenkrebs	177 450	188 100	1,060 (+6,0)	0,922 (-7,8)	1,150 (+15,0)		
– C50 Mammakarzinom	250 510	146 587	0,585 (-41,5)	0,553 (-44,7)	1,057 (+5,7)		1
– C61 Prostatakarzinom	80 088	83 868	1,047 (+4,7)	0,845 (-15,5)	1,239 (+23,9)	mu	sculoscelettal:
M00-M99 Krankheiten des Muskel-Skelett-Systems und des Bindegewebes	1 239 222	1 641 564	1,325 (+32,5)	1,244 (+24,4)	1,065		+ 24,4%
– M15–M19 Arthrosen	298 507	419 411	1,405 (+40,5)	1,256 (+25,6)	1,118 (+11,8)		
 – M40-M54 Krankheiten der Wirbelsäule und des Rückens 	340 625	545 418	1,601 (+60,1)	1,508 (+50,8)	1,061 (+6,1)		Zi

Quelle: Krankenhausdiagnosestatistik des Statistischen Bundesamtes, eigene Berechnungen

Germany: longterm development of inpatient days 2007 – 2011 per region

	observed	expected based on demographic aging	after adjusting for aging	
Schleswig-Holstein	0,30%	4,26%	-3,96%	
Hamburg	-3,25%	3,15%	-6,39%	
Bremen	-6,22%	2,27%	-8,49%	observed: -2.94%
Niedersachsen	-2,66%	3,20%	-5,86%	
Westfalen-Lippe	-2,52%	2,19%	-4,71%	
Nordrhein	-2,50%	3,28%	-5,78%	expected based
Hessen	-2,09%	3,67%	-5,76%	on aging:
Rheinland-Pfalz	-2,06%	2,82%	-4,88%	+3.55%
Baden-Württemberg	-4,14%	4,28%	-8,42%	
Bayern	-4,97%	4,01%	-8,98%	after adjustment
Berlin	-0,62%	5,89%	-6,50%	for aging:
Saarland	-3,80%	2,10%	-5,90%	- 6,49%
Mecklenburg-Vorpommern	-2,81%	4,78%	-7,59%	
randenburg	-2,79%	5,65%	-8,44%	
Sachsen-Anhalt	-6,94%	1,88%	-8,83%	
Thüringen	-0,18%	2,95%	-3,13%	
Sachsen	-1,25%	3,05%	-4,31%	
Bund Germany	-2,94%	3,55%	-6,49%	7

NE

Database: destatis DRG statistics

SEITE 24

Germany: recent development of inpatient days and intensity of ambulatory care 2011 – 2012 by region and indication

- Comparison of recent developments in intensity of ambulatory care (volume of claims) and in inpatient days; after adjustment for aging by region differentiated by ICD-10 chapters.
- 17 regions and 20 ICD-10 chapters: **340 cells**

service deve	elopment	ambulatory care (office-based physicians)
2011-2012		increase	reduction
inpatient	reduction	175 (51%)	56 (16%)
care	increase	82 (24%)	27 (8%)

descriptive analysis to stimulate evaluation and discussion on desired developments at regional level

health policy targets for a joint development of ambulatory care and inpatient care?

A provocative suggestion: 21 best-practice counties in Germany

Utilization of inpatient care: 15% <u>below</u> national average Utilization of ambulatory care 13% <u>above</u> national average

Federal State	county	inhabitants in 20	11
Baden-Württemberg	Rhein-Neckar-Kreis	537.625	
Niedersachsen	Oldenburg	127.282	
Baden-Württemberg	Konstanz	278.983	2
Baden-Württemberg	Ulm, Stadt	122.801	
Hessen	Wiesbaden, Stadtt	275.976	C C
Baden-Württemberg	Mannheim, Stadt	313.174	m
Baden-Württemberg	Karlsruhe, Stadt	294.761	
Hessen	Main-Taunus-Kreis	227.398	
Niedersachsen	Ammerland	118.004	
Bayern	München, Stadt	1.353.186	tot
Niedersachsen	Lüneburg	177.279	iUi
Berlin	Berlin	3.460.725	
Sachsen	Leipzig, Sadt	522.883	
Mecklenburg-Vorpommern	Rostock	202.735	
Hamburg	Hamburg	1.786.448	U
Niedersachsen	Osnabrück, Stadt	164.119	SC
Bayern	München, Landkreis	323.015	
Mecklenburg-Vorpomern	Bad Doberan	117.197	but
Niedersachsen	Oldenburg, Stadt	162.173	
Baden-Württemberg	Freiburg im Breisgau	224.191	
Baden-Württemberg	Heidelberg, Stadt	147.312	

SEITE 26

health policy targets for a joint development of ambulatory care and inpatient care?

A provocative suggestion: 21 best-practice counties in Germany

share of ambulatory care

group 1: high (**best-practice**); group 2: average;

```
group 3: low
```

Index of regional attractiveness (for physicians)

Regression model to explain physician density by county - variables based on surveys among physicians (and availability)

- professional opportunities, metropolitan environment (GDP per capita, rate of highly qualified employees, high rate of inmigration for professional training, rate of male part-time employees)
- availablity of childcare (rate of day-care for toddlers and preschool children)
- Opportunities for professional exchange and vocational training (density of hospital beds, nursing home capacity, rate of students)
- rural environment (-) (rate of employment, rate of labour force participation, share of recreational areas, low population density, distance from metropolitan areas and subcentres, access to fast train-lines and motorways)

Best-practice regions and regional attractiveness

Efficient division of labour between inpatient and ambulatory care does not depend on a specific attractiveness of regions and spreads across different types of regions in terms of physician density (and social structure)

How much of variation is substitution? / WIC / London September 2014 / www.zi.de

What have we learned so far?

- overall level of care is higher in areas with a less favorable risk structure (age, gender, morbidity, mortality, social structure) but there is no homogeneity of care
- areas with less favorable risk structure tend to have a lower density of physicians both ambulatory and inpatient; urban regions are more likely to have higher rates of ambulatory care
- there is a varying share of ambulatory and in patient care in total care as well as eg a varying share of care provided by GPs and by specialists within the ambulatory care sector
- a lot of the variation in individual services appears to be substitution between different types of services / specialties / sectors
- regulators tends to think from a "national average" as a reference for capacity planning or penalizing overtreatment which turns out to be meaningless
- to guide investment (eg in ambulatory care) / disinvestment (eg in inpatient care) decisions and quality improvement strategies we need population-based "best-practise" benchmarks taken from regional variation which can then be transformed into local targets

Thank you for your attention

111

www.zi.de

Zentralinstitut für die kassenärztliche Versorgung in der Bundesrepublik Deutschland Herbert-Lewin-Platz 3 10623 Berlin

Tel. +49 30 4005 2450 Fax +49 30 4005 2490 zi@zi.de